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Abstract 
An important class of questions for knowledge based 
systems concern comparisons, such as “How is X like Y?” 
and “How are X and Y different?”  This paper describes 
how we have used a cognitive simulation of analogical 
processing to answer such questions, to support domain 
experts in entering new knowledge.  We outline techniques 
for case construction and summarization of comparison 
results that have been developed and refined based on an 
independent formative evaluation.  In addition to these 
techniques, we discuss the role of the comparison system in 
SHAKEN, the larger system in which they are embedded, 
and our plans for further improvements. 

Introduction 
One important task of knowledge-based systems is 
answering questions.  Users ask questions of knowledge-
based systems for many reasons: The question itself may 
be relevant to some larger task that only the user is privy 
to, the question might relate to some task that the user and 
software are jointly undertaking, or the question might be 
asked as a way of seeing what the system understands.  
The latter is especially important in knowledge capture, 
where the user is a domain expert (rather than an AI 
expert) who is interacting with the system in order to build 
up its knowledge base by interacting with it, much as a 
teacher might interact with a student.  In knowledge 
capture tasks, comparison questions are particularly 
important.  Two examples of comparison questions are  
 “How are X and Y similar?” 
 “How are X and Y different?” 
where X and Y are two concepts that the system knows 
something about.  The importance of comparison questions 
arises from several properties.  First, comparison provides 
a context for describing knowledge.  Asking how X is 
similar to Y focuses on what they have in common, rather 
than just asking for an exhaustive listing of what is known 
about X.  Second, comparison provides a means of 
highlighting differences.  A common trap in knowledge-
based systems is reading more into the system’s 
knowledge based on the names given to concepts as 
opposed to what is actually stated about the concepts.  For 

instance, a system that had concepts for DNAMolecule and 
RNAMolecule should know that a DNAMolecule has two 
strands while an RNAMolecule has only one.  Third, 
comparison provides suggestions for additional knowledge 
that could be entered.  Missing differences, as in the 
previous example, is one source of suggestions.  Missing 
similarities are another: If the system suggests that 
RNAMolecule might have strands, based on a comparison 
with DNAMolecule, the user can consider whether or not 
that suggestion, or some variation of it, is valid.   

This paper describes new techniques we have developed 
for answering comparison questions.  These techniques 
rely on ideas from structure-mapping [6], a psychological 
theory of analogy and similarity.  Our algorithms use the 
structure-mapping engine (SME) [1,5,4] as the comparison 
mechanism.  That stable foundation only provides part of 
the answer, however.  Our techniques address three key 
issues in answering comparison questions: 

1. Case construction.  How should the concept 
descriptions be automatically generated from the 
underlying knowledge base?   

2. Evaluating candidate inferences.  How should the 
inferences generated from the comparison be 
tested? 

3. Summarization.  How should the results of the 
comparison be used to generate a helpful answer? 

This paper describes how we address these issues in 
algorithms for answering comparison questions.  These 
algorithms have been integrated into two knowledge 
formulation systems, and tested successfully (although 
there is ample room for improvement, as we describe 
below) with domain experts in independent evaluations.  
We start by briefly reviewing the relevant psychology and 
properties of SME.  Then we summarize the SHAKEN 
knowledge formulation system, how our work fits in it, 
and the formative feedback we received through the 
evaluation process.  Next we describe our algorithms for 
case construction, evaluating candidate inferences, and 
summarization, including how we have addressed the 
problems found through the evaluation process.  Finally, 
we discuss the broader implications of this work. 
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Structure-mapping: A brief review 
Gentner’s structure-mapping theory [6] provides an 
account of analogy and similarity based on comparisons of 
structured representations.  According to structure-
mapping theory, structural alignment takes as input two 
structured representations (base and target) and produces 
as output a set of mappings.  Each mapping consists of a 
set of correspondences that align items in the base with 
items in the target and a set of candidate inferences, which 
are surmises about the target made on the basis of the base 
representation plus the correspondences.  The constraints 
on the correspondences include structural consistency, i.e., 
that each item in the base maps to at most one item in the 
target and vice-versa (the 1:1 constraint) and that if a 
correspondence between two statements is included in a 
mapping, then so must correspondences between its 
arguments (the parallel connectivity constraint).   Which 
mapping is chosen is governed by the systematicity 
constraint: Preference is given to mappings that match 
systems of relations in the base and target.   Each of these 
theoretical constraints is motivated by the role analogy 
plays in cognitive processing.  The 1:1 and parallel 
connectivity constraints ensure that the candidate 
inferences of a mapping are well-defined.  The 
systematicity constraint reflects a (tacit) preference for 
inferential power in analogical arguments. 

Although structure-mapping started as a model of 
analogy, it has been extended to model similarity and 
comparison more generally [7,8].  Some of these results 
bear directly on the problem at hand.  First, the same 
structural alignment process used in analogy is also used in 
human similarity judgments, including within-domain 
comparisons.  Thus SME [1,5,4] our cognitive simulation 
of structural alignment, will provide results that human 
users should find natural.  Second, when asked to describe 
differences, people use the same structural alignment 
process to figure out commonalities.  This induces a 
distinction between two types of differences.  Alignable 
differences are differences related to commonalities.  An 
example of an alignable difference might be the color of 
two cars or their horsepower – differences in properties of 
corresponding arguments.  All other differences are non-
alignable differences.  This distinction is important 
because alignable differences are more psychologically 
salient than non-alignable differences.  Algorithms for 
answering questions about differences need to exploit this 
distinction to provide results that their users will find 
natural.   

These psychological results provide important 
constraints on the process of answering comparison 
questions, since we need to produce results that will be 
natural for the human questioners.  Since structural 
alignment is used for comparisons, we can use SME as a 
component to compare the descriptions of two concepts.  
The correspondences it produces provide the set of 

similarities that a person would compute, given the same 
descriptions.  These same correspondences are used in 
computing alignable differences.  Non-alignable 
differences can be extracted by analyzing the non-
overlapping parts of the descriptions mapped.  These 
computations are described in more detail below.  Of 
course, the psychological constraints are only part of the 
puzzle.  The demands of the task and the system that our 
algorithms are embedded also provide key constraints.  We 
discuss these next. 

Figure 1: An early example of a comparison answer 
 

 
Context: Knowledge Formation Systems 

One of the biggest bottlenecks to the widespread 
deployment of knowledge-based systems is the difficulty 
of building large knowledge bases.  DARPA’s Rapid 
Knowledge Formation program is tackling this problem by 
creating systems that can be used by domain experts to 
create their own knowledge bases, without the constant 
intervention of AI experts.   This requires the software to 
communicate with the domain expert in understandable 
terms: To present what it knows, to assimilate new 
knowledge, and to enable the expert to test its knowledge 
by questioning it.  Two integrated systems have been 
developed by teams, one led by SRI and one led by 
Cycorp.  We are supplying analogical processing services 
for both systems.  This paper focuses on our work for the 
SRI system, called SHAKEN. 

SHAKEN uses several methods to make its knowledge 
understandable to human experts.  At the level of content, 
SHAKEN’s knowledge is organized into a library of 
components that can be composed to create domain-
specific descriptions.  The components are implemented in 
a frame system called KM [1].  In terms of display, experts 
interact with the system via a formalized version of 
concept maps, a technique that has been widely used in 
education.  Browsing and search tools provide navigation 
aids, and a forms-based interface provides the means of 
asking questions [2].  Our software is used whenever one 
of the two comparison questions listed at the start of the 
paper is asked.   The format of our answers evolved during 
development; Figure 1 shows an example. 



The basic algorithm for describing the similarities 
between two concepts X and Y is  

1. Construct case descriptions c(X), c(Y) for X and Y 
2. Use SME to compare c(X) and c(Y) 
3. Summarize the correspondences found via SME. 

The algorithm for describing the differences is very 
similar: 

1. Construct case descriptions c(X), c(Y) for X and Y 
2. Use SME to compare c(X) and c(Y) 
3. Derive alignable and nonalignable differences 

based on the SME results 
4. Summarize the correspondences and differences 

With the exception of step #2 in both algorithms, our 
algorithms for each step have evolved significantly in 
response to user feedback.  The next section describes our 
solutions and their evolution, in terms of the three issues 
introduced in the beginning of the paper. 

Our approach 
Our techniques can be divided into three categories.  First, 
case construction techniques extract a relevant subset of 
knowledge about the concepts to be compared from the 
knowledge base.  Second, candidate inference filtering 
eliminates “obviously wrong” conjectures.  Third, 
summarization techniques simplify the results of the 
comparison and arrange them in a form that should be 
easier for users to apprehend.  We discuss each in turn. 

Case construction 
Since the task is knowledge entry, we are comparing 
general conceptual knowledge from the KB rather than 
concrete examples.  This conceptual knowledge is 
instantiated for comparison by creating a skolem 
individual and instantiating knowledge about it.  Our initial 
algorithm was very simple: 
   Input:  a concept X 
  Output: Set of facts F  

1. Retrieve all facts from KM about X 
2. For each fact which mentions another entity 

Y 
a. Add Y to F 
b. If |F| < N  (where N is a fixed 

maximum number of expressions) 
If Y has not been seen before, 
recurse, retrieving all facts about Y 

The main advantage (and, as it turns out, drawback) of 
this algorithm is that it did not require more specific 
contextual knowledge (as used in [9]).  Since almost 
everything in the KB is interconnected, tight bounds had to 
be drawn.  We kept N at about 300 initially, thinking that 
this would lead to reasonable amounts of information for 
matching.  We discovered that this led to superfluous 
output, and obscured details that users considered 
important.  The summarization techniques discussed below 
ameliorated this problem to some degree, but clearly a 
better case construction method was called for. 

How can the system detect what the user thinks is 
important?  Since SHAKEN is designed for knowledge 
capture, users are entering and browsing knowledge using 
a concept map display, dynamically expanding and 
contracting the level of detail shown about aspects of a 
concept based on what they are doing.  We decided to take 
advantage of the fact that these displays tacitly express 
what users are currently thinking of as important, and use 
this information to guide case construction: 
   Input: a concept map representing concept X 
   Output: Set of facts F 

1. Retrieve the facts and entities from the 
concept map for concept X as currently 
displayed. 

2. For each entity that is in a leaf position in the 
concept map, extend it by retrieving all facts 
from KM that mention that entity.   

In other words, the case information extracted is what 
the user has chosen to display, which presumably is related 
to what they are thinking about currently, plus one level of 
expansion at the leaves, to provide more accurate matches 
for them.  We believe that this algorithm will help 
eliminate the superfluous detail problem.  At the very least 
it provides the user more control over the process, letting 
them play a more active role.   

Evaluating Candidate inferences 
Initially we did not perform any evaluation of candidate 
inferences, due to time constraints.  This was a mistake in 
retrospect, since having suggestions appear that were 
“obviously” wrong in terms of what the system had 
already been told eroded trust in the rest of the answer.  By 
contrast, suppose the user knows that the system will only 
make suggestions that might, as far as it knows, be true.  
Such suggestions that the user thinks are false provide 
evidence as to what additional knowledge should be 
entered, in order to rule them out. This argument suggests 
that the most important evaluation to be done of candidate 
inferences is to filter out those which are already known to 
be incorrect. 

Now we use KM-based reasoning techniques to check 
every candidate inference, and eliminate those which are 
provably false given the current KB contents.  Would more 
sophisticated evaluation of candidate inferences add value 
in this task?  We believe that the answer is no.  During 
knowledge entry concept descriptions tend to be 
incomplete, so it seems unlikely that much would be 
gained by additional validation effort.   

Summarizing results 
As noted above, answering both similarity and difference 
questions relies on the correspondences found by SME.   
In the case of similarity questions, the focus is on the 
correspondences.  For difference questions, the 
correspondences are used to figure out what differences 



should be most salient to users, so that those can be 
presented before other differences. 

Similarities are presented in terms of a list of the entities 
that correspond in the two concepts.  SME chooses entity 
correspondences based on relational overlap (see [5]), so 
the correspondences between expressions that suggest an 
entity correspondence are available via drill-down as a 
form of explanation.  Such explanations by their nature are 
evidential, often leading to “bushy” justifications1.  Their 
size depends on the relative overlap in the relational 
structure, and provides a useful explanation as to why the 
match came out the way it did.   

One serious problem we found is that, with the large 
descriptions produced by our original case construction 
technique, the number of entity correspondences was huge, 
and overwhelmed users.  One useful trick was to cluster 
entity correspondences by types of entities involved (e.g., 
those entity correspondences involving strands), which 
ameliorated but did not resolve the problem.  We think that 
entity-type summarization combined with our new case 
construction method will make a substantial improvement. 

In summarizing differences, since alignable differences 
are more salient we present them first.  An important type 
of alignable difference are property differences, where two 
entities that play similar roles are of different types.  These 
are detected by examining the attributes that hold for 
corresponding entities.  Like correspondences, drill-down 
is available to inspect why the matcher found a specific 
difference interesting.  Candidate inferences, computed in 
both directions, are also summarized as interesting 
differences.  Suppose two concepts are very similar in the 
user’s mind.  In that context, a candidate inference is 
generally either a statement about the other description that 
needs to be made (in some form or another), or indicates 
that other knowledge should be added to rule out that 
possibility.   

Non-alignable differences are mentioned last.  Non-
alignable differences are statements that are true in one 
description but not the other, with no correspondences in 
common.  In this knowledge capture task, such differences 
have a similar import to candidate inferences in terms of 
what they should suggest for the expert.   

Evaluation 
The first evaluation of SHAKEN occurred in the summer 
of 2001, as part of the DARPA Rapid Knowledge 
Formation program.  SHAKEN was delivered to IET, an 
independent contractor, who then had biology graduate 
students use it to build knowledge bases about textbook 
biology knowledge.  Overall, the results were encouraging.  
                                                 
1 The difference between such justifications and the more 
typical low branching factor justifications found in 
standard dependency structures can be a source of 
confusion, but since this is the nature of analogical 
reasoning, the problem is one of training. 

Unfortunately, as indicated above, the original versions of 
our algorithms did not fare so well.   

The evaluators found three major problems: 
1. Too much information was presented.  This made it 

difficult for users to understand the analogy and 
find information that they were looking for.  They 
wanted an even higher level summary of the 
analogy. 

2. Differences that were obviously wrong were 
included in the explanation. 

3. Similarities that users expected were sometimes not 
found.   

We believe that the change in case construction will be a 
major step towards solving the first problem, since the 
original algorithm had no way of knowing what users 
thought was important.   However, we suspect that 
judicious dynamic rerepresentation of the conceptual 
descriptions, based on the outcome of an initial match, will 
be needed to completely resolve this problem.  The second 
problem has been addressed by using KM inference to 
filter candidate inferences, as described above. 

The third problem is the most difficult, because it is in 
part a function of the KM style of representation.  Recall 
that each expression match is a piece of evidence about 
what entities should be placed into correspondence.  There 
are two factors that work in opposite directions to make 
matching more difficult.  First, the amount of 
discrimination a relationship provides depends on the size 
of the relational vocabulary available.  If most of the 
relationships are the same (e.g., Part-of in many KM 
concepts), then there is little reason to choose one match 
over another, and the choice is driven by attribute 
information about the entities involved.  Second, if experts 
are less uniform in their representation choices (e.g., using 
Part-of in one description and Basic-Structural-
Unit for the similar relation in another), the matcher’s job 
is harder.  The second problem is easier to solve than the 
first, in that techniques such as minimal ascension have 
been used to allow close relational matches.  Some of this 
is simply a function of the concepts not being sufficiently 
articulated, and can serve as a signal that entering more 
knowledge to emphasize (or rule out) the similarity 
between the concepts would be useful. 

Although we are not pleased with the summer results, 
they still constitute valuable information: We learned that 
the simplest techniques are insufficient, and we learned 
how our summaries needed to evolve to be more useful to 
users.  All of the changes described in this paper have been 
implemented in the new version of the SHAKEN system, 
and will be tested in the midterm evaluation in January 
20022.  This paper will be updated with those results once 
they are available. 
                                                 
2 From a purely experimental design standpoint, it would 
be informative to do a sensitivity analysis to see how much 
improvement each of these changes provides.  



Discussion 
The three issues we addressed here (case construction, 
filtering candidate inferences, and summarization) are 
relevant beyond just answering comparison questions: 
these are issues that any theory of an analogical reasoning 
task must address.  We believe that the solutions we 
presented here are more broadly relevant.  For example, 
our use of what is effectively discourse context to 
constrain case construction is very likely to be applicable 
to any interactive analogical reasoning context, although 
the evidence as to what is relevant may be harder to extract 
in less visual interfaces. Similarly, in evaluating candidate 
inferences, the technique of filtering out conjectures that 
can cheaply be disproved seems generally applicable.  
Also, our correspondence-based method of summarizing 
similarities and the decomposition of differences are 
reasonable first-cut solutions.  However, many issues 
remain to be explored, especially when other analogical 
processing tasks are considered.  Some of these issues are: 
 
• In case construction, the key questions seem to be (a) 

how should cues as to the scope of material to include 
be ascertained given the task context, (b) how much 
should case construction be driven by incremental 
outputs of the summarization process, (c) what notions 
of salience are relevant for a given task? 

• In evaluating candidate inferences, the key questions 
seem to be (a) how much work should be spent 
disproving a conjecture, (b) should work be spent 
proving a conjecture, and (c) how should skolems in 
candidate inferences be resolved? 

• In summarization, the key questions seem to be (a) what 
set of rerepresentation techniques would provide 
concise, informative human-like summaries and (b) 
how can drill-down be supported without 
overwhelming the user? 

Answers to these questions will be an important next step 
in the development of the theory of analogical reasoning. 
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